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The same calculations were performed for a doublet 
made out of two symmetric Gaussian profiles (k = 0.15 
both for left side and right side). The matching of the 
results was as above. This time the sine Fourier co- 
efficients had to come out as zero, and in fact, in both 
eases, they were smaller than 10 -4. This also means 
that the Fourier coefficients of ll(n) were calculated 
around the center of gravity even when the input data 
was that of l(n) where I(n)=Ii(n)+ 12(n). 

In the present work we assumed that R=I1/ I  was 
known. However, R can be easily calculated. It has 
been shown (Gangulee, 1970) that R can be determined 
by defining a 'residue' by 

Residue = ~ II~ (n)l - I'n (n) 
n-~ l  

where Ii(n ) is the synthesized Ii(n ) profile assuming a 
given value of R. This 'residue' will be minimum for 
the correct value of R. The 'experimental' profile was 
calculated using R=0.67. Then the profile 11(n) was 
calculated using different values of R and the corre- 
sponding 'residues' were determined• The plot of the 

'residue' versus R had a minimum (residue = 0) at R = 
0.67 which is the true value of R. 

Research was sponsored by the Office of Aerospace 
Research, United States Air Force, under Contract 
F33 615-69-C 1027. 

References 

BRILL, R. (1928). Z. Kristallogr.. 68, 387. 
DE ANGELIS, R. J. (1965). Local Atomic Arrangements Stud- 

ied by X-ray Diffraction, edited by J. B. COHEN • J. E. 
HILLIARD. New York: Gordon & Breech. 

FINCH, L. G. (1949). Nature, Lond. 163, 402. 
GANGULEE, A. (1970). J. Appl. Cryst. 3, 272. 
JONES, F. W. (1938). Proc. Roy. Soc. A166, 16. 
KEATING, D. (1959). Rev. Sci. Instrum. 30, 725. 
IODRON, A. & D~, ANGELIS, R. J. (1971). SMD Symposium 

on Computer Aided Engineering, p 285, edited by G. M. L. 
GLADWELL. Waterloo, Ontario; Univ. of Waterloo Press. 

PAPOULIS, A. (1955). Rev. Sci. Instrum. 26, 423. 
RACHINGER, W. A. (1948). J. Sci. Instrum. 25, 254. 
WARREN, I .  E. (1960). X-ray Diffraction, p. 275. Reading: 

Addison-Wesley. 

Acta Cryst. (1971)• A27, 599 

The Moments of a Powder Diffraction Profile in the Kinematic Tangent-Plane Approximation 
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The nth moment of the diffraction line profile of a small or imperfect crystal is obtained in terms of the 
derivatives of V(t), the volume common to the crystal and its 'ghost' displaced by a distance t parallel 
to the scattering vector, and of J(t)- iK(t) ,  the mean value of the product FF* of the structure factors of 
unit cells separated by the same translation. The expression takes the form of a series that can be carried 
to any desired degree of approximation; previously only the first two or three terms had been obtained. 
For particle-size broadening by crystals of certain simple shapes the series terminates, giving an 'exact' 
expression. 

Introduction 

The intensities, positions, widths, asymmetries, . . .  of 
diffraction maxima in crystallography have been spe- 
cified by such measures as peak height, peak position, 
width at half height, ratio of the intercepts of the chord 
at half height by the perpendicular through the peak, 
• .. and other ad hoc constructs. In mathematics, and 
particularly statistics, however, the use of the moments 
of the distribution as measures of its properties is more 
common. Moments have in fact been used as measures 
of the effect of geometrical aberrations since the work 

* Permanent address: Department of Physics, University of 
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of Spencer (1931), but their use as measures of the 
properties of diffraction profiles is comparatively re- 
cent, since the 'tails' of these profiles approach zero 
approximately as the inverse square of the distance 
from the centre of the profile, so that the zeroth mo- 
ment (integrated intensity) is convergent, the first mo- 
ment (centroid position) is convergent by reasonable 
convention, and all other moments diverge. Tournarie 
(1956 a, b), however, investigated the manner of diver- 
gence of the second moment (variance), and showed 
that the second moment of a deliberately truncated 
portion of the powder diffraction maximum was directly 
proportional to the length of the truncated portion, the 
proportionality factor being inversely proportional to 
the mean crystallite size of the specimen. To the degree 
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of approximation used by Tournarie the second mo- 
ments of the diffraction profile, the instrumental aber- 
rations, and the profile of the emission spectrum are 
simply additive, so that the second moment of the dif- 
fraction profile may be obtained from the second mo- 
ment of the observed profile by direct subtraction of 
the effects of the experimental arrangement and the 
emission spectrum, without the necessity of an elaborate 
'unfolding' process, as required for other measures 
of line width. When a higher degree of approximation 
is required the moments are not strictly additive, but 
the correction remains a matter of simple arithmetic 
(Wilson, 1964a, 1970; Edwards & Toman, 1970). 

Tournarie's result is in fact the first term in a series 
for the second moment. Wilson (1962a, 1962b, 1963) 
generalized his treatment, extending it to strain and 
mistake broadening in addition to particle-size broad- 
ening, and obtaining the second term in the series. 
Wilson also considered briefly the first moment (cen- 
troid displacement), the third moment (skewness), and 
the zeroth moment (integrated intensity) (Wilson, 
1964b). Mitra (1964) has discussed the fourth moment. 
Not all the moments have been obtained to the same 
degree of accuracy, and the degree of accuracy is in 
any case somewhat problematical. Wilson (1962b), for 
example, shows that certain terms are zero 'to the 
degree of approximation employed elsewhere in this 
paper', a correct but hardly quantitative assessment. 
The following work was therefore undertaken with the 
aim of expressing the moments of the diffraction profile 
as series that can be extended to an indefinite number 
of terms, so that 
(i) any moment can be calculated to any desired degree 
of approximation and the accuracy of the approxima- 
tion assessed, 
(ii) in particular, a further term can be written in the 
expression for the asymptotic form of the variance 
versus range curve, and 
(iii) in particular, 'exact' expressions can be obtained 
for the particle-size diffraction-profile moments of crys- 
tals of those simple shapes for which the series termi- 
nate. 

For some moments object (iii) requires one or two 
more terms than object (ii). The remarkable reprodu- 
cibility achieved by Langford (1965, 1968a, b) and 
Edwards & Toman (1971) in their measurements of the 
variances of the line profiles of the X-ray diffraction 
maxima of several specimens of polycrystalline metals 
has given a further stimulus to obtain better theoretical 
expressions for the moments as a function of range. 

The theoretical expression for the line profile is 

I ( s )=2  A(t) cos 2zcstdt-2 B(t) sin 2nstdt (1) 
t O  0 

in the notation of Wilson (1962c). Briefly, and aside 
from slowly varying factors, A(t) is the product V(t)J(t) 
and B(t) is the product V(t)K(t), where V(t) is the 
volume common to a crystal and its 'ghost' dis- 
placed a distance t perpendicular to the reflecting 

planes (Stokes & Wilson, 1942), and J(t)-iK(t) is the 
mean value of the product of the structure factors FF* 
for pairs of cells separated by the same displacement 
(Wilson, 1943, where, however, J, was written for the 
entire complex function). The volume V(t) vanishes 
for t greater than some value r, and s is the deviation 
of the angle of diffraction from its ideal value, expressed 
in reciprocal-space units. The range of inte~ation over 
s used in determining the moments of the line profile 
is deliberately limited to -a~  to + az, where in practice 
al and az are nearly equal, and the moments are sought 
as functions of o1 and a2. In the following A(0), A'(0), 
J"(O), etc. denote the limits of the functions as t ap- 
proaches zero from positive values, and A'(r), J"(r) ,  etc. 
denote the limits as t approaches z from lower values; 
from their definitions 

A(r) = B(r) = B(0) = 0 .  (2) 

The nth moment of the truncated line profile is given by 

i 
a 2  

M,= s"I(s)ds (3) 
--171 

f = 2 t cos 2rrstdtds 
--0" 1 

lo f • - 2 s"B(t) sin 21rstdtds. (4) 
- - a l  0 

It is convenient to consider the even moments and the 
odd moments separately, since they involve sines and 
cosines in a more or less reciprocal fachion. Except 
where it is otherwise stated, it is assumed that A(t) and 
B(t) have continuous derivatives in the range 0 < t <'r. 

T h e  even m o m e n t s  

When n is even equation (4) may be written 

( 2 r 0 "  A(t) t-d-i] cos 2z~stdtds 
--al 0 

- B (t) . . . . .  cos 2rco'lt- cos 2rco'2t dt , (6) 
0 2rot 

where first s" has been manufactured as the nth deriva- 
tive of the sine or cosine of 2rcst and then the integration 
with respect to s has been performed. Provided that 
the necessary derivatives are continuous in the range 
from 0 to r, equation (6) can now be integrated by parts 
n times, giving 

M,,= 2 (-1)"/2 (2z0 -" {P,,+Q,,-R,,-S,,} (7) 
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where 

[ d ~ "- 1 sin 2~r , t+  sin 2~zerzt 
P,,= A(t) \-eli] 2~zt 

- -  A'(,) (dtd),,-2 sin 2a:o-1 t2a:, + sin 2a:o2t 
! 

' ~  ° .  ° . . .  

+ ( _  1).A._2(t) d sin 2~ro-d+sin 2~zo'2t 
d} ................ 2~t 

_ (_ I ) ,A ,_ I ( , ) s i n  2~za, t+  sin 2zco'zt ] ] 
2rot 

(8) 

Q"= 1 ~o A"(t) sin 2zcad+sin2rct 2zca2t dt , (9) 

[ d ~"-* cos 2zctrd-cos 2z~azt 
R,= B(t) \d t]  2zct 

[ d ~  n-2 COS 2zur~t-cos 2~o'2t 
- B'(t) ~ dt ] ..... 2nt .... 

. . . . . .  

d cos 2zca~t- cos 2zca2t 
+ (-- 1)"B"-2(t) d-t 2rct 

- ( - 1 ) " B " - l ( t )  c°s2-~--°!t-c°s2zet 2zco-2t ]~ , (10) 

S.= f~ B"(t) cos2na, t-cos2~razt2~rt dt. (11) 

For n even, of course, the factors ( -1 ) "  in equations 
(8) and (10) are positive, but expressions of the same 
form with n odd are needed later. If the derivatives 
of A(t) and B(t) are not continuous over the full range 
0 to v, but are piecewise continuous over the ranges 
0 to tt, q to t2, . •.,  tm to Z, the various terms in equa- 
tion (8) etc. must be evaluated for each range and the 
results summed. If, for example, P, ( t - )  is the value 
taken by the expression on the right of equation (8) 
as t is approached from lower values and P, ( t+ )  is 
its value as t is approached from higher values, the 
value of P, for piecewise continuous derivatives of A(t) 
is 

P , = [ P , ( q - ) -  P,(O+ )]+[P,( t2-)-P,(q +)] 
+ . . .  +[e,(r-)-P,( tm+)].  (12) 

Parallel expressions can be written for Q,, R,, S,. 
Fortunately A(t) and B(t) have continuous derivatives 
over the range 0 to v in the problems normally con- 
sidered, though they are not continuous actually at 0 
and z. The non-oscillatory terms in the moments in- 
volve only the values for 0 + ;  these are usually the 
terms of practical importance. Evaluating the deri- 
vatives and inserting the limits in equations (8) and 
(10) for P, and R, can always be done, though it be be- 
comes tedious for large values of n. The first term, in- 

volving (d/dt) "-1, vanishes at both limits in each case. 
The integrals in equations (9) and (11) for Q, and S, 
can be expanded in series of inverse powers of al and 
az in two ways. The first is simply to write A"(t) and 
B"(t) as power series in t and integrate term by term. 
This gives series with the properties that successive terms 
have finite values for small a, that the non-oscillatory 
parts decrease as successive inverse powers of a, and 
that only the derivatives at t =  0 are involved. The os- 
cillatory terms, however, are all of the order of a -1. 
The other method is successive integration by parts. 
The series obtained in this way have terms that are not 
individually finite for small a, and involve derivatives 
of A(t) and B(t) at both t = 0  and t=z .  Successive 
terms do, however, genuinely decrease as successive 
inverse powers of a; the non-oscillatory parts are the 
same for both types of series. Which expansion is more 
convenient will depend on the purpose for which it is 
wanted, and the two are, of course, identical when they 
terminate, as for particle-size broadening by simple 
shapes. The series of the first type are thus 

~ _s!n 2.1rag_t+ sin 2.n_a2_t - dt Q.= A'(O) 
J0 2rot 

S A" + ~(0) (sin 2rco'lt + sin 2rco'2t) dt 
+ 2zc - o 

+ (2r0~2! t(sin 2too'd+ sin 2~o'2t) dt 

A"+a(0) tZ(sin 2~o-1t + sin 2rco'at) dt 
+ (2n)~! o 

An+a(0) 
I~ ta(sin 2zcalt + sin 2~ztr2t) 

+ (2zc)4~ 
dt 

+ . . . . . .  (13) 

- 2zcl {A"(0)[Si (2rco'lz) + Si (2go-2z)] 

+ A"+l(0) [ 1 - c°s 2rc~rl~2zro'l + 1 - cos Dro'2"r ] 2 ~ r o . 2  

A"+2(O) [ sin 2rceq~-2rcal~ cos 2rccrlz 
+ 2t - - t  ......... ~2-~b~ . . . .  

s!_.n 2 ~ -  2,~o2~ cos 2,~o2~ ] + 
(2~,,2) ~ .I 

A"+a(0) r4~r~,v sin 21ra, v-(4g2ohZ'c 2-2 )  cos 2~ro'x'r 
+ - 3! [ (2~zo',) s 

4~3 + 

4~o'£c sin 2rco'2~'-(4rc2o'~z 2 -  2) cos 2~o'2~'] + 
(2~cr~) 3 ] 

A " + 4 ( 0 )  
+ 

4t 
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[ (12rcZa~rz-6) sin 2rco'lr-(8z?a~r 3-12rcalr) cos 2rco'lr 
x (2~:o.1) 4 

+ (127tzazzz- 6) sin 2 h a i r -  (8zt3~r a -  12zwzr cos 2rwzr] I 
(27~0.2)4 - - - ]  + " ' "  , j  

and similarly 

1 
{B"(0) [Cin (2zra~r)- Cin (2ZWzr)] S ,=  2zc 

+B"+l(O)[ -sin2rurlz2z~o'l + sin 2~z~rzr ] 2 r e a r  

+ B"+2(0)2! L[1 - cos  2zcalr-27rO-lZ(2rcal) z sin 27fair 

1 - c o s  2rwzr-27War sin 2nazz ] 
J 

B"+a(0) 
• . J l~  ~ .  

3! 

- 4rcalr cos 27fair - (47r2cr~r 2 - 2) sin 2zra, r 
X - (27¢trl)  3 

+ 4zco'zr cos 2rw2z+(4zw2r2-2) sin 2rur2r ] 
(2rco-9 3 J 

+ . . .  }, (15) 

where Si(z) and Cin(z) are the sine and cosine integrals 

Si(z)= S~ sinz Z dz (I6) 

and 

l z 1 - cos z 
Cin(z)= - -  dz. (17) 

0 z 

They are tabulated and their main properties listed by, 
for example, Abramowitz & Stegun (1964). The series 
have been carried far enough to give 'exact' expressions 
for all moments of particle-size line profiles for crystals 
of simple shape. In order to obtain the other type of 
expansion equation (9) is rewritten 

Q.=A"(O) I ~ sin 2rwtt dt + I ~ A"(t)-A"(O) sin2zwtt dt 
o Drt ~o 2~rt 

+ similar terms in o'2. (18) 

The first integral gives the same sine integral as in 
equation (14). The second may be integrated by parts, 
giving 

(14) 

1 ( d )  4 An(r)-A'(O) ] 
+ -(2-~i~,) - ~  a g  r " ' "  

d A ' ( r )TA"(0  ) 1 
+ sin 2rcalr (2z:crl) z dz 

(2ztal)4 d}- r 

l ( d ) s A"(v)-A"(O) ] 
+ (2zc---~1) -g- drr v - " "  

+ similar terms in aa ~, 
J 

(19) 

provided that A(t) has continuous derivatives. If it has 
not, the calculation would start from the analogue of 
equation (12) instead of from equation (9), and would 
be correspondingly more complex. 
Similarly, 

1 {-B"(O)Cin(2rca~z) B"+2(0) 
S,,= ~-u 2(2zta,)2 

B"+6(0) 
6(2zeal)6 + . . .  

[B"(r)- B.(o) 
+ sin 2rca~r I 2rcalr 

1 (d )2  B"(r)-B"(O) 
( 2 ~ r )  3 d7  

l ( d ) 4 B'('c)- B"(O) ] 
+ (2rco'lr) 5 ~ r - " "  

l d B"(r)- B"(O) 
+ cos 2z~o'ar ( 2 ~ o ' l r )  2 dr r 

l ( d ) a B"(r)- B"(O) 

1 ( d )s B"(r)-B"(0) 
+ (2~a~) - - - - ~  ~ r 

- . . . ] -  similar terms in az}. 

B n + 4 ( 0 )  

4(2ha0 a 

(2O) 

Q,= -;--~ {A'(O) Si(2rcalr)+ A"+I(0) 
2rca, 

a.+5(0) 
" ~  . . ° 

5(2~a0 5 

A"+3(0) 
3(2zeal) a 

r A"(r) I A ~ 0  ~ 
- cos 2rcaVr / 

I. 2no-it 
1 (d)2  A'(r)-A"(O) 

(2~cr,) ~ d7  

Any even nth moment can now be written down 
from equation (7), equations (8), (14) or (19), (10) and 
(15) or (20) providing the necessary values of P,, Q., 
R, and S,. Many of the terms oscillate with period alz 
or a2r and small amplitude, and these oscillations are 
not ordinarily observable experimentally. The non- 
oscillatory terms are therefore those of greater interest, 
and they are readily picked out of the relevant general 
equations. For P, and R, they arise from the derivatives 
that do not vanish at the lower limit, and are thus 
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(-- l)(n-2)/2(2~Z) n-2 n-1 n-1 
[0.1 + 0 " 2  ] P,=A'(0)  n - 1  

+ A'"(0) ( -  1)~"-4)/2(2z0"-4-[0.7 -3 + 0.~-3] 
n - 3  

. . . .  . ,  

+ A ' -  1(0)[0.i +a2],  (21) 

no even powers of 0. appearing, and 

( -  1)'/z(2z0 "-3 [0.7-z_0.~-2] 
R.=B"(0) n - 2  

+ BiV(0) ( -  1)¢'-z)/z(2z0 "-s 
n - 4  [a7-4-  0.~-4] 

+ .. .  + B"-~(O) ~ M-0.~], (22) 

no odd powers of 0. appearing. The sine and cosine 
integrals in equations (14,) (15), (19) and (20) oscillate, 
but from their properties the sum of the two sine inte- 
grals oscillates about zc and the difference of the cosine 
integrals oscillates about the logarithm of the range 
ratio. 

The non-oscillatory parts are thus 

1 A, + [1  + 1 ]  Q,=½A"(0) + ~-~-~i 1(0) a--/ -a--~- 

1 [loi ~1]  A .+3(0) _ + + . . .  (23) 
3(2~z) 4 

and 

1 B"(0) log (0.1/0.2) 1 5 ' = -  2--~- 2(2rc) 3 

1 1 
×Bn+2(O) [(72 0 .2 ]+  . . . .  (24) 

Further terms are easily supplied from equations (19) 
and (20) if required. The even moments of greatest 
interest are the zeroth, second and fourth. For the 
zeroth moment equation (7) gives 

1 A ' ( 0 ) [ 1  + l ]  
M°=A(0) + ~ 0.-T o'---2- 

1 1 1 
+ ~ B " ( 0 ) [ a  2 0.22 ] 

241r 4 ~ + + . . . .  (25) 

The first two terms are those derived by Wilson (1964b); 
the other two are new. For the second moment equation 
(7) gives 

1 1 
M2 27/: 2 A'(0)[0.1+0.2] ~ A"(0) 

1 1 
4~ 3 B"(0) log (0.1/0.2) - ~ A'"(0) 

[1 1] 1 [1 1] 
× - -  + BiV(0) . 

0.1 ~ 32rd 0.1 z 0.~ 

1  v,0)[1 1] 
--~-~ + ~22 + . . . .  (26) + 9--~n6 

The first term is that derived by Tournarie (1956a, b), 
the second was added by Wilson (1962a, b), and the rest 
are new. For the fourth moment equation (7) gives 

1 
A'(0)M +41 -8-~-  B"(0)M- 0.~1 M 4 = 67~2 

1 1 
+ ~ A'"(O)[m + 0.~] + ~ A~(O) 

1 
+ ~ B~v(o) log (0.d0.2) 

1 AV(0 ) [ 1 + 1 ]  + (27) 
+ ~ 0.-7 -~]- . . . .  

The terms in A', A'", and A ~v are those found by Mitra 
(1964); the rest are new. 

The odd moments 
When n is odd the transformation of equation (4) by 
turning s into d/dt takes a slightly different form, so 
that the sines and cosines are interchanged and some 
of the signs are different. The equivalent of equation 
(6) becomes 

( -  1)(,- 1)/22 
M, = (2z0 . 

{I2 ( d ) " c°s 2zc0.1t - c°s 2rc0.2t dt 
x A(t) --d-{ - 2rot 

+ I~ B(t) (--d-{. d) 's in2zc0.1t+sin2rca2tdt}  (28) 

Let us denote by P', Q',, R', S', the result of interchang- 
ing A and B in equations (8) to (20). Then the general 
expression for the nth odd moment, the equivalent of 
equation (7), is 

(-- 1)("-1)/22 { R ' - S ' , + P ' , - Q ' } ,  (29) 
M, = (2n)" 

and by its use any odd moment can be expressed to 
any desired degree of approximation. As for the even 
moments, the oscillatory terms are not normally ob- 
servable. With the interchange of A and B equations 
(23) and (24) give the correct values of Q', and S~, but 
in equations (8) and (10) it is the alternate set of terms 
that lead to a non-oscillatory contribution at the lower 
limit, so that 

(-- 1)(n-1)/2(270 n-2 [a~_2 +a~ -2] 
P ' = B " ( 0 )  2~z(n-2) 

+ OtV(0 ) ( -  1)(n-3)/2(2rc)"-4__ [0.~-4 Al_a~-4] 
2z~(n - 4) 
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J l -  . . . . . .  

+ B" -  ~(0) 
( -  1)2(2~)3 [0-a 1 + ~]  

(2703 

corrected to 

[ . . . .  
t 2(0-1 + 0-~){a (o)} ~ ] "~]B"(0). 

and 

+ B"- *(0) ( -  1)(270 27z - [0-1 21- 0"2] (30) Discussion 

R'.= A'(0) 
(-- 1)("-*)/2(2a:) "-I  [o.~_l_a~_l] 

2~z(n -- 1) 

(-1)~"-~'/2(2~) "-~ [aT_~_~g_~] 
2n(n - 3) 

+ A'"(0) 

' l -  . . . .  • 

q-hn-4(O) (-- 1)2(2~Z) 4 [O.4_O.41 
(2704 

+ A"- 2(0) ( -  1)(2702 
(2702 [0-2-a2]. (31) 

The non-oscillatory part of any odd moment can now 
be written down from equation (20), but only the first 
and third have been found of interest so far. The first 
moment is 

1 1 
/14,- 2rc B'(0) + ~ -  A'(0) log (al/0-2) 

47? + - -  + A"'(0) 0-2 

× + 4 - ~  ~ (0) ~ + ~  + . . . .  

(32) 

Only the first of these terms was given by Wilson 
(1962b). The third moment is 

1 1 M~= - ~  A'(0)[0-~- 0-I]+ ~ B"(0)[0-, +0-2] 

1 1 
+ ~ B ' " ( 0 ) -  ~ A"'(0) log (al/0-2) 

[ v~l] 647t 61 AV(0 ) 1 1 +-L-7 + i ~  BiV(0) 0--] 

[ 1 1 ]  1 [ - - 7 ~ 1 1 ]  × 0-~ ~ -~92-~7 Bvl(0) + ~  + . . . .  

(33) 

Wilson (1962b) gave the second and third of these terms 
with, however, an error of 2n in the coefficient of 
B"(0) in his equation (21). This error is carried forward 
into his equation (23) and Mitra's (1964) equation (2). 
Wilson's equation (23) for the skewness should be 

(34) 

The first draft of this paper was prepared in 1968. 
Although only a preliminary abstract has been published 
previously (Wilson, 1969), it has formed the background 
to the use of further terms in the asymptotic variance- 
range relation in recent Birmingham work (Edwards 
& Toman, 1970, 1971; Edwards & Langford, 1971; 
Wilson, 1970). Non-additivity of the diffraction-profile 
and emission-profile contributions to the variance- 
range intercept casts some doubt on the application to 
nickel made in the final sentence of the paper by Wilson 
(1968), though his general argument is not affected. 

For particle-size broadening B ( t ) -  O, and the various 
equations above simplify considerably, especially for 
those particle shapes for which A(t) is a polynomial 
(Stokes & Wilson, 1942). 'Exact' expressions for the 
particle-size moments in such cases will be treated else- 
where. 

I am greatly indebted to Mr H. J. Edwards for check- 
ing the mathematics and discovering several errors in 
sign and in powers of 2. 
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